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The problem of the motion of an incompress ib le  cyl indrical  shell  with an explosive charge 
is solved numerical ly  for the propagation of a plane detonation wave f rom the end of the 
charge.  The strength of the shell is not taken into account . '  A th ree - te rm equation o f s t a t e  
[1] is assumed for the detonation products.  A compar ison  is made with the one-dimensional  
c a s e  �9 

A cylindrical  shell with an explosive charge (EC) is considered.  A plane detonation wave is excited 
at the open end. The detonation products (DP) escape into a vacuum. The charge is bounded on the left by 
a rigid wall. After the impact  of the detonation wave (DW) on the wall a ref lected shock wave appears ,  and 
the subsequent motion of the gas is nonisentropic.  For  a given equation of state of the DP the controlling 
pa rame te r s  of the problem will be 

= l/Ro,  I~ = m I M 

where m is the m a s s  of the charge,  M is the mass  of the shell,  l is the length, and R0 is the initial radius 
of the charge.  

The explosive is pentolite (a 50-50 alloy oftr ini t rotoluene and pentaerythri tyl  t e t ran i t ra te )wi th  an 
initial density P0 = 1.65 g / c m  3, a heat  of explosive t ransformat ion  Q = 0.0536 M b a r .  em3/g, and a detonation 
rate D = 0.7655 cm/psec .  

The pa ramete r s  at the Chapman-Jouguet  point are  

p~_z = 0.2452 Mbar D = 0.7655 cm/psec 

Pc-J= 2.2i00 g/cm ~ v j =  0.i94i cm/~sec 
ec_j= 0.0724 Mbar , cm3/g cc_j= 0.57t4 cm/vsec 

where p is the p ressure ,  p is the density, e is the internal energy,  v is the axial component of velocity,  and 
c is the velocity of sound. 

Dimensionless variables  are  introduced in such a way that the equations of motion and the equation of 
state are  not changed in form: 

P'  ~ P/Po Ds , P' = P/P0, v '  ~ v /D,  u' = u /D ,  c' = c /D,  e' = e/D e , 

r' = r /Ro,  z'  = z /Ro ,  t '  = tD/Ro  

where u is the radial  component of velocity, r is the radial  coordinate,  z is the axial coordinate,  and t is 
the t ime. 
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The e q u a t i o n  of  s t a t e  fo r  the  de tona t i on  p r o d u c t s  is  
t aken  in the f o r m  

p' = Ap' e" + B9 "4 + Cexp ( - -  k / p') 

The v a l u e s  of  the c o n s t a n t s  a r e  

A = 3 5 . 1 0  -2 , B = i 6 5 9 . t 0  -5, C = 2 1 4 7 . t 0  -a, k = 3 6 3 6 . 1 0  -3 

The equa t ion  of m o t i o n  of  the s h e l l  in  d i m e n s i o n a l  v a r i a b l e s  is  w r i t t e n  in the f o r m  

d M  d W / d t  = pds n 

O m i t t i n g  p r i m e s ,  t h i s  e x p r e s s i o n  in c o m p o n e n t  f o r m  in d i m e n s i o n l e s s  v a r i a b l e s  i s  

dU/dt  = pB~t, dV/d t  -~ p B ~  tg 7 (1) 

H e r e  W i s  the v e l o c i t y  of  the m a s s  dM,  U and V a r e ,  r e s p e c t i v e l y ,  the  v e r t i c a l  and h o r i z o n t a l  c o m -  
ponen ts  of the v e l o c i t y ,  y is  the ang le  b e t w e e n  the v e r t i c a l  and the s u r f a c e  of the s h e l l ,  and  n i s  a uni t  v e c -  
t o r  a l o n g  the n o r m a l  to the s h e l l .  

The b o u n d a r y  cond i t ion  on the s h e l l  i s  

W ,  = w~ (2) 

w h e r e  W n and w n a r e  the p r o j e c t i o n s  of the  v e l o c i t i e s  of the s h e l l  and  of  the de tona t ion  p r o d u c t s  on the 
n o r m a l  to the  s h e l l .  

The b o u n d a r y  cond i t i ons  on the f ron t  of the e s c a p i n g  gas  a r e  

p = O , p = O  

Because of the axial symmetry of the problem the radial component of velocity on the axis is zero. 

Up to the incidence of the detonation wave on the rigid wall the boundary conditions on the wave front have 

the form 

p : p~_j, p : p~_j, e = e~_j, v = vc-.r, u = 0 

A f t e r  the a p p e a r a n c e  of  the r e f l e c t e d  shock  wave  the a x i a l  c o m p o n e n t  of v e l o c i t y  a t  the r i g i d  wa l l  is  
z e r o .  

The i n i t i a l  c o n d i t i o n s  w e r e  s p e c i f i e d  by  us ing  the p lane  s e l f - s i m i l a r  d i s t r i b u t i o n  beh ind  a de tona t ion  
wave  f ron t  o b t a i n e d  by  G. P .  M e n ' s h i k o v  fo r  the a p p l i c a b l e  equa t ion  of  s t a t e .  

The  f i n i t e - d i f f e r e n c e  a p p r o x i m a t i o n  to the e q u a t i o n s  of  mo t ion  of  the de tona t i on  p r o d u c t s  was  m a d e  by  
us ing  an e x p l i c i t  t w o - s t e p  s c h e m e  of  the  s e c o n d  o r d e r  of a c c u r a c y .  The o n e - d i m e n s i o n a l  v e r s i o n  of  th is  
s c h e m e  is  d e s c r i b e d  in d e t a i l  in [2]. The c o m p u t a t i o n a l  s c h e m e  is  g iven  t h e r e  i s  a g e n e r a l i z a t i o n  of one 
f i r s t  u sed  by  G. S. R o s l y a k o v  and L .  A. Chudov in 1962 to s o l v e  the p r o b l e m  of s u p e r s o n i c  flow a r o u n d  a 
b lun t  o b j e c t  [3]. The  p a r a m e t e r s  a t  the r i g i d  w a l l  w e r e  c a l c u l a t e d  by  the g e n e r a l  s c h e m e  us ing  f i c t i t i ous  
po in t s :  the q u a n t i t i e s  sough t  a t  the  f i c t i t i ous  po in t s  w e r e  d e t e r m i n e d  by  an  e x t e n s i o n  of  the c o m p u t a t i o n a l  
r e g i o n ,  t ak ing  a c c o u n t  of a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s .  At  the b o u n d a r y  wi th  a v a c u u m  the p r e s s u r e  
and d e n s i t y  w e r e  a s s u m e d  z e r o ,  and the a x i a l  and  r a d i a l  c o m p o n e n t s  of  the v e l o c i t y  a t  t h e s e  po in ts  w e r e  
found by l i n e a r  e x t r a p o l a t i o n ,  u s i n g  the two c l o s e s t  po in t s  o c c u p i e d  by  the c loud of de tona t ion  p r o d u c t s .  
The D P  p a r a m e t e r s  (p, e ,  v) a t  the s h e l l  w e r e  c a l c u l a t e d  by  a u n i l a t e r a l  s c h e m e  of the f i r s t  o r d e r  of a c c u -  
r a c y .  The p r e s s u r e  p was  d e t e r m i n e d  f r o m  the equa t ion  of  s t a t e  of the DP.  The c o m p o n e n t s  of the  v e l o c i t y  
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of the shell U and V were found by Eqs. (1) with second order  accuracy .  
The values of v, p, and e on the axis were obtained by parabolic extra-  
polation. 

To ensure  the stabil i ty of the calculation, the time step was  found 
f rom the condition 

minKAr/(lu] ~ c) 
A'c  = rain min KAz / (I v [ -}- c) 
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Fig. 4 

inflow of DP into the shell. 

where Ar  is  the step in the radial  coordinate and Az is the step in the 
axial coordinate.  

The quantity K (the Courant number) was taken equal to 0.4. The 
calculations were per formed on a B]~SM-6 computer  using a 27 x 25 net. 

The shell and the gas cloud are shown in Fig. 1 at various times 
(p = 1, ~ = 2). The par t  of the shell close to the end rece ives  a relat ively 
small  displacement  because of the rapid fall of p ressu re  in this region 
due to the intense outflow of DP. The parts  of the shell at  the rigid wall 
begin to mbve at a later  t ime, but they receive l a rge r  initial accelera t ions  
as a consequence of the increase  in p ressu re  due to the reflect ion of the 
DW from the wall. The velocity of the gas front emerging into a vacuum 
increases  f rom 0.7 to 0.92 on the axis. It is interest ing to note that the 
cloud of DP does not propagate to the left of the end; i .e. ,  there is no 

The i sobars  for t = 1.9957, i .e. ,  at  the instant direct ly  preceding the incidence 
of the detonation wave on the wall, are  shown in Fig. 2. The curvature  of the i sobars  is explained by the 
intense action of the la teral  ra refac t ion  wave. For  the same value of the axial coordinate the Pressure  on 
the shell is significantly lower than the p ressu re  in the central  column of the DP. 

Figure 3 shows how the p res su re  var ies  (curve 1) on the rigid wall a f ter  the reflection of the detona- 
tion wave in the central  column of the DP. Curve 2 shows the numerica l  solution for plane one-dimensional  
reflection of the DW for the same equation of state.  Curve 3 corresponds  to the one-dimensional  anayltic 
solution of K. P. Stanyukovich when the polytrope of the DP has the form pp~= const  [4]. Figure 4 shows 
the radial  component of velocity of the shell U as a function of the radius of the shell at the c ross  section 
z = 1. The open curve cor responds  to the relation U = f(R) for the one-dimensional  radial  dilation of a 
shell with cyl indrical  symmet ry  when an instantaneous detonation occurs ,  and the expansion of the detonation 
products is descr ibed  by the polytrope pp-3 = eonst [4]. 

The two-dimensional  problem of the dilation of a shell was discussed by Wilkins [5] with and without 
taking account of the strength of the shell.  When the strength is not taken into account, Wilkins '  resul ts  are 
in qualitative agreement  with ours .  

The authors thank G. S. Roslyakov and V. M. Paskonov for ass is tance in the work and for helpful 
advice �9 
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