NUMERICAL SOLUTION OF THE TWO-DIMENSIONAL
NONSTATIONARY PROBLEM OF THE MOTION OF A SHELL
UNDER THE ACTION OF DETONATION PRODUCTS

A. V. Kashirskii, Yu. V. Korovin, UDC 533.6.01.011
V. A. Odintsov, and L. A. Chudov

The problem of the motion of an incompressible cylindrical shell with an explosive charge
is solved numerically for the propagation of a plane detonation wave from the end of the
charge. The strength of the shell is not taken into account.’ A three-term equation of state
[1] is assumed for the detonation products. A comparison is made with the one-dimensional
case.

A cylindrical shell with an explosive charge (EC) is considered. A plane detonation wave is excited
at the open end. The detonation products (DP) escape into a vacuum. The charge is bounded on the left by
a rigid wall. After the impact of the detonation wave (DW) on the wall a reflected shock wave appears, and
the subsequent motion of the gas is nonisentropic. For a given equation of state of the DP the controlling
parameters of the problem will be

A=1URy p=miM

where m is the mass of the charge, M is the mass of the shell, / is the length, and R, is the initial radius
of the charge.

The explosive is pentolite (a 50~50 alloy of trinitrotoluene and pentaerythrityl tetranitrate) with an
initial density py = 1.65 g/cm?, a heat of explosive transformation Q = 0.0536 Mbar - cm3/, and a detonation
rate D = 0.7655 cm/ysec.

The parameteré at the Chapman—Jouguet point are

P y= 0.2452 Mmbar D = 0.7655 cm/usec
Py = 2:2100 g/cm? v,_y=0.4941 cm/psec
e _;= 00724 Mbar : em¥/g ¢, y=0.5T14 cm/sec

where p is the pressure, p is the density, e is the internal energy, v is the axial component of velocity, and
¢ is the velocity of sound.

Dimensionless variables are introduced in such a way that the equations of motion and the equation of
state are not changed in form:

P = plpyD?, o' = plpy, v/ =v/D, v’ = ulD, ¢ =c/D, ¢ = e/D?,
r' =r/Ry, 2 = 2/R,, ' = tD/R,

where u is the radial component of velocity, r is the radial coordinate, z is the axial coordinate, and t is
the time.
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Fig. 1

The equation of state for the detonation products is
taken in the form

p'=A4p’e + Bp* + Cexp(—k/p)
The values of the constants are

A4 == 35.10"%, B = 1659.10-5, C = 2147-107%, k = 3636.107°

The equation of motion of the shell in dimensional variables is written in the form

dM dW/dt = pds n

Omitting primes, this expression in component form in dimensionless variables is
dUldt = pRu, dV/di = pRu tgy @)

Here Wis the velocity of the mass dM, U and V are, respectively, the vertiéal and horizontal com-
ponents of the velocity, y is the angle between the vertical and the surface of the shell, and n is a unit vec~
tor along the normal to the shell.

The boundary condition on the shell is

W, = w, (2)

where Wy and wp are the projections of the velocities of the shell and of the detonation products on the
normal to the shell.

The boundary conditions on the front of the escaping gas are
p=0,0=0

Because of the axial symmetry of the problem the radial component of velocity on the axis is zero.
Up to the incidence of the detonation wave on the rigid wall the boundary conditions on the wave front have
the form

P = Peed, P = Pc-dy € = €3, V=10V, =0

After the appearance of the reflected shock wave the axial component of velocity at the rigid wall is
Zero.

The initial conditions were specified by using the plane self-similar distribution behind a detonation
wave front obtained by G. P. Men'shikov for the applicable equation of state.

The finite-difference approximation to the equations of motion of the detonation products was made by
using an explicit two-step scheme of the second order of accuracy. The one-dimensional version of this
scheme is described in detail in [2]. The computational scheme is given there is a generalization of one
first used by G. S. Roslyakov and L. A. Chudov in 1962 to solve the problem of supersonic flow around a
blunt object {3]. The parameters at the rigid wall were calculated by the general scheme using fictitious
points: the quantities sought at the fictitious points were determined by an extension of the computational
region, taking account of appropriate boundary conditions. At the boundary with a vacuum the pressure
and density were assumed zero, and the axial and radial components of the velocity at these points were
found by linear extrapolation, using the two closest points occupied by the cloud of detonation products.

The DP parameters (o, e, v) at the shell were caleulated by a unilateral scheme of the first order of accu~-
racy. The pressure p was determined from the equation of state of the DP. The components of the velocity
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PN VA T 7 of the shell U and V were found by Eqgs. (1) with second order accuracy.
Z@é The values of v, p, and e on the axis were obtained by parabolic extra-

13 polation.
4 N
y Z Jd To ensure the stability of the calculation, the time step was found
) - from the condition '
19 14 ] T4
- . [ min KAr/(Ju|+c)
Fig. 3 A7 = min min KAz /([v] +¢)
_ where Ar is the step in the radial coordinate and Az is the step in the
v P axial coordinate.

- The quantity K (the Courant number) was taken equal to 0.4. The
calculations were performed on a BESM-6 computer using a 27 X 25 net.

The shell and the gas cloud are shown in Fig. 1 at various times
(u =1, A =2). The part of the shell close to the end receives a relatively
small displacement because of the rapid fall of pressure in this region
due to the intense outflow of DP. The parts of the shell at the rigid wall
begin to move at a later time, but they receive larger initial accelerations
as a consequence of the increase in pressure due to the reflection of the
125 R DW from the wall. The velocity of the gas front emerging into a vacuum
increases from 0.7 to 0.92 on the axis. It is interesting to note that the
cloud of DP does not propagate to the left of the end; i.e., there is no
inflow of DP into the shell. The isobars for t =1.9957, i.e., at the instant directly preceding the incidence
of the detonation wave on the wall, are shown in Fig. 2. The curvature of the isobars is explained by the
intense action of the lateral rarefaction wave. For the same value of the axial coordinate the pressure on
the shell is significantly lower than the pressure in the central column of the DP.

Fig. 4

Figure 3 shows how the pressure varies (curve 1) on the rigid wall after the reflection of the detona-
tion wave in the central column of the DP. Curve 2 shows the numerical solution for plane one-dimensional
reflection of the DW for the same equation of state. Curve 3 corresponds to the one-dimensional anayltic
solution of K. P. Stanyukovich when the polytrope of the DP has the form pp™® = const [4]. Figure 4 shows
the radial component of velocity of the shell U as a function of the radius of the shell at the cross section
z =1. The open curve corresponds to the relation U = f(R) for the one-dimensional radial dilation of a
shell with cylindrical symmetry when an instantaneous detonation occurs,and the expansion of the detonation
products is described by the polytrope pp"3 = const [4].

The two-dimensional problem of the dilation of a shell was discussed by Wilkins [5] with and without
taking account of the strength of the shell. When the strength is not taken into account, Wilkins' results are
in qualitative agreement with ours.

The authors thank G. S. Roslyakov and V. M. Paskonov for assistance in the work and for helpful
advice.
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